Length of Pseudorandom Binary Sequence Required to Train Artificial Neural Network Without Overfitting
نویسندگان
چکیده
The artificial neural network (ANN) has been applied to the various fields due its capability process complicated nonlinear functions involving a large amount of data. A pseudorandom binary sequence (PRBS) is commonly used train ANN since PRBS easily generated by using linear feedback shift register and correlation function which peaked at zero delay but almost other delays. However, when length not sufficiently long (compared input size ANN), trained could suffer from overfitting where describes behavior training very well, does poorly on new data inputs. In this paper, we provide minimum required avoid for given ANN. For purpose, analyze estimate pattern through theoretical study. These analyses are confirmed numerical simulation. findings paper would be select
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
An application of artificial neural network to maintenance management
This study shows the usefulness of Artificial Neural Network (ANN) in maintenance planning and man-agement. An ANN model based on the multi-layer perceptron having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. The model achieved an accuracy of over 70% in predicting the expected downtime.
متن کاملEstimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network
In this study, the use of the three-layer feed forward neural network has been investigated for estimating of infinite dilute diffusion coefficient ( D12 ) of supercritical fluid (SCF), liquid and gas binary systems. Infinite dilute diffusion coefficient was spotted as a function of critical temperature, critical pressure, critical volume, normal boiling point, molecular volume in normal boilin...
متن کاملPrediction of Entrance Length for Magnetohydrodynamics Channels Flow using Numerical simulation and Artificial Neural Network
This paper focuses on using the numerical finite volume method (FVM) and artificial neural network (ANN) in order to propose a correlation for computing the entrance length of laminar magnetohydrodynamics (MHD) channels flow. In the first step, for different values of the Reynolds (Re) and Hartmann (Ha) numbers (600<ReL increases.
متن کاملArtificial Neural Network for Sequence Learning
This poster shows an artificial neural network capable of learning a temporal sequence. Directly inspired from a hippocampus model [Banquet et al, 1998], this architecture allows an autonomous robot to learn how to imitate a sequence of movements wi th the correct t iming.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3111092